ACO inspired computer-aided detection/diagnosis (CADe/CADx) model for medical data classification

Document Type

Article

Publication Date

1-1-2019

Abstract

Background: Computer-assisted diagnosis (CAD) has become a common practice of use in the healthcare industry due to its improved accuracy and reliability. The CAD systems are expected to improve the quality of medical care by assisting healthcare professionals with a wide range of clinical decisions. A CAD system is a combination of computer-assisted detection (CADe) and computer-assisted diagnosis (CADx) system. Objective: The objective of this research article is to generate an optimized rule-set for medical diagnosis capable of providing improved accuracy. It is evident from the literature that keeping a balance between these performance parameters is a real challenge. Method: In order to achieve the desired objective, the following two contributions have been proposed to improve diagnosis accuracy: 1) an unsupervised feature selection approach based on ACO Meta-heuristic is used to design the CADe system, and 2) an ACO assisted decision tree classifier technique is employed to make CADx system. Result and Discussion: Three popular UCI (Wisconsin Breast Cancer, Pima Indian Diabetes and Liver Disorder) medical domain datasets have been used to evaluate the performance of the proposed model. The exploratory result analysis shows the efficiency of the proposed work as compared to existing work.

Publication Title

Recent Patents on Computer Science

First Page Number

250

Last Page Number

259

DOI

10.2174/2213275912666181205155018

This document is currently not available here.

Share

COinS