On a least absolute deviations estimator of a multivariate convex function
Document Type
Conference Proceeding
Publication Date
1-23-2015
Abstract
When estimating a performance measure ∗ of a complex system from noisy data, the underlying function ∗ is often known to be convex. In this case, one often uses convexity to better estimate ∗ by fitting a convex function to data. The traditional way of fitting a convex function to data, which is done by computing a convex function minimizing the sum of squares, takes too long to compute. It also runs into an 'out of memory' issue for large-scale datasets. In this paper, we propose a computationally efficient way of fitting a convex function by computing the best fit minimizing the sum of absolute deviations. The proposed least absolute deviations estimator can be computed more efficiently via a linear program than the traditional least squares estimator. We illustrate the efficiency of the proposed estimator through several examples.
Publication Title
Proceedings - Winter Simulation Conference
First Page Number
2682
Last Page Number
2691
DOI
10.1109/WSC.2014.7020112
Recommended Citation
Lim, Eunji and Luo, Yao, "On a least absolute deviations estimator of a multivariate convex function" (2015). Kean Publications. 1877.
https://digitalcommons.kean.edu/keanpublications/1877