On a least absolute deviations estimator of a multivariate convex function

Document Type

Conference Proceeding

Publication Date

1-23-2015

Abstract

When estimating a performance measure ∗ of a complex system from noisy data, the underlying function ∗ is often known to be convex. In this case, one often uses convexity to better estimate ∗ by fitting a convex function to data. The traditional way of fitting a convex function to data, which is done by computing a convex function minimizing the sum of squares, takes too long to compute. It also runs into an 'out of memory' issue for large-scale datasets. In this paper, we propose a computationally efficient way of fitting a convex function by computing the best fit minimizing the sum of absolute deviations. The proposed least absolute deviations estimator can be computed more efficiently via a linear program than the traditional least squares estimator. We illustrate the efficiency of the proposed estimator through several examples.

Publication Title

Proceedings - Winter Simulation Conference

First Page Number

2682

Last Page Number

2691

DOI

10.1109/WSC.2014.7020112

This document is currently not available here.

Share

COinS