A Study of Real-Time Scheduling Algorithms in Cluster Environment Based on Machine Learning
Document Type
Conference Proceeding
Publication Date
1-1-2023
Abstract
Machine Learning is on the rise and is transforming industries across the board, from climate forecasting to stock price evaluation. In this study, we explore the use of machine learning in real-Time scheduling algorithms for cluster environments. Using the 'GWA-T-4 Auver Grid' dataset, we predict burst times of processes with an accuracy of over 87%. We then compare the performance of the FCFS and SJF scheduling algorithms using these predictions, and find that while SJF performs better, it is better suited for short processes, while FCFS is better for longer ones. Our results provide insight into the potential of machine learning in the realm of real-Time scheduling algorithms for cluster environments.
Publication Title
2023 3rd International Conference on Consumer Electronics and Computer Engineering, ICCECE 2023
First Page Number
682
Last Page Number
686
DOI
10.1109/ICCECE58074.2023.10135306
Recommended Citation
Zhang, Ruiyang; Liu, Zehai; Tian, Gengchen; Lu, Yuhao; and Sujatha, Krishamoorthy, "A Study of Real-Time Scheduling Algorithms in Cluster Environment Based on Machine Learning" (2023). Kean Publications. 344.
https://digitalcommons.kean.edu/keanpublications/344